Culvert and Pipe Phasing

Barney Blackburn, PE, CPESC, CPSWQ NCDOT – Roadside Environmental Unit Soil & Water Engineering Section Supervisor

NCDOT Culvert Phasing Process

- Hydraulics Unit:
 - Culvert Survey Report (CSR)
 - Permit Drawings and Impact Summary
- Hydraulics and Roadside Environmental Units:
 - Develop Culvert Construction Sequence
- Roadside Environmental Unit:
 - Include Culvert Construction Sequence in Erosion Control Plans

Components of Culvert Phasings

Stilling Basin or Silt Bag

Impervious Dike

Temporary Pipe

Temporary Channel Change

Stilling Basin Design

- Volume (ft³) = Width of Stream Channel (ft.) x (Length of Culvert (ft.) + 20 ft. (10 ft. on Each Side)) x Depth of Water in Stream (ft.)
- Typically used for Volumes > 100 CY (2700 ft³)
- Freeboard = 6 inches (Minimum)
- Design Permeable Stone Drain to Dewater at a <u>Slow</u> Rate
- Add Volume to Required Volume of Sediment Basins

STATE OF UTILE NORTH CAROLINA DEPT. OF TRANSPORTATION DIVISION OF HIGHWAYS RALEIGH, N.C. 1-12

NOTES

STILLING BASIN BERMS.

OPERATIONS.

CONSTRUCTION.

THE STILLING BASIN SIZE IS VARIABLE AND

DEPENDENT ON SPECIFIC SITE REQUIREMENTS

SUBMIT THE SIZE, LOCATION AND PERMEABLE STONE DRAIN MATERIAL FOR APPROVAL PRIOR TO

PUMP THE EFFLUENT INTO THE STILLING BASIN TO

AS WELL AS PROPOSED CONSTRUCTION

A MAXIMUM DEPTH OF 3 FEET.

FOR PUMPED

EFFLUENT

STILLING ENGLISH STANDARD BASIN DRAWING FOR

COIR FIBER BAFFLES UNCLASSIFIED EARTH MATERIAL INSTALL COIR FIBER BAFFLES IN ACCORDANCE WITH ROADWAY STANDARD DRAWING NO. 1640.01. INSTALL THE TOP OF THE COIR FIBER BAFFLE A MINIMUM OF 6" LOWER THAN THE TOP OF THE USE THE TYPICAL SECTION SHOWN FOR THE STILLING BASIN AS A GUIDE. THE BASIN MAY HAVE ANY TYPE CONFIGURATION AS LONG AS 14"L" 14"L" 14"L" SUFFICIENT VOLUME IS PROVIDED AND PROVISIONS ARE MADE FOR A PERMEABLE STONE DRAIN. DO NOT EXCEED 5 FT. IN HEIGHT FOR THE EARTH DIKES REQUIRED FOR STILLING BASINS. ADDITIONAL DEPTHS MAY BE ATTAINED BY EXCAVATING BELOW THE NATURAL GROUND LEVEL.

> EARTH DIKE PLAN VIEW

STEEL

POST

"w"

TYPICAL SECTION VIEW

SHEET 1 OF 1

1630.04

PUMPED DRAWING STANDARD FOR BASIN ENGLISH STILLING

EFFLUENT

FOR

1-12 STATE OF
NORTH CAROLINA
DEPT OF TRANSPORTATION
DIVISION OF HIGHWAYS
RALEIGH, N.C.

PERMEABLE

STONE DRAIN

5'±

SHEET 1 OF 1 1630.04

Stilling Basin Volume Design

Formula for Stilling Basin Volume:

Volume =
$$\frac{d}{3} \left[W_{top} L_{top} + W_{base} L_{base} + \left(\frac{W_{top} L_{base} + W_{base} L_{top}}{2} \right) \right]$$

 $W_{base} L_{base} \times 1 ft.$

- d = 3 5 ft.
- Side Slope = 1.5:1

Stilling & Sediment Basin Design

- Example of Stilling Basin as Sediment Basin:
 - Required Volume for Sediment Basin = 1800 ft³
 - Required Volume for Stilling Basin = 1500 ft³
 - Provided Volume of Sediment Basin = 2820 ft³

Additional Volume Needed for Sediment Basin =

$$1800 + 1500 - 2820 = 480 \text{ ft}^3$$

Stilling Basin Placement

Inside Perimeter EC Devices

Level Ground

Locate to Avoid Pumping Across Stream

Avoid Placing in Locations of Sediment Basins

Stilling Basin Construction

Construct Above Ground with Length: Width Ratio of 2:1

Install 3 Coir Fiber Baffles

Excavate 1 ft. Below Ground for Permanent Pool

Stabilize Interior and Exterior Slopes

Use Small Grade Stone (NCDOT Class A & B, No. 57)

Stilling Basin

Stilling Basin with Geotextile Liner

Stilling Basin with Flashboard Riser

Flashboard Riser

Silt Bag Design & Placement

- Maximum Pumping Rate of 80 gal/min/sf
- Typically, Volumes less than 100 CY (2700 ft³)

Place Inside Perimeter EC Devices

Place on Level Ground

Locate to Avoid Pumping Across Stream

Silt Bag Installation

Install Geotextile (NCDOT Type 2) under Bag

Place No. 57 Stone or Wood Pallets under Bag

Always Keep Extra Bag(s) Onsite!

Flocculants and Polymers will Clog Pores of Bag

Silt Bag

Impervious Dike

- Dike Types:
 - Sand Bags
 - Sheet Piling
 - Stone with Polypropylene
- Used in Stream Channel at Upstream and Downstream of Site
- Used to Anchor Temporary Pipes
- Used to Create Side of Temporary Channel

Sand Bags

Sheet Piles

Stone with Geotextile

Temporary Pipe Design & Construction

Design to Average Daily Flow (ADF)

• Common Sizes: 15", 18" and 24"

Anchor Ends with Impervious Dikes

Used Primarily for Culvert Extensions

Temporary Pipe

Temporary Channel Design

Design to Carry Average Daily Flow (ADF)

Use Maximum of 2:1 Side Slopes

Design as Base Ditch

Don't Design in Areas of Existing Fill Slopes!

Temporary Channel Construction

Line with Geotextile (NCDOT Type 4)

- Protect Top of Channel with:
 - Berms
 - Silt Fence
 - Impervious Dike

Berm at Top of Temporary Diversion

Silt Fence with Temporary Diversion

Types of Culvert Phasings

Pump and Dike

Dike Only

Dike and Pipe

Dike and Temporary Channel

BEST MANAGEMENT PRACTICES FOR

CONSTRUCTION AND MAINTENANCE ACTIVITIES

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

August 2003

Phasing Per BMP Manual Note

Pump and Dike

Short Duration Process (Max. 5 days!)

Use for Pipe Installation

Include Pump-Around Detail in the Plans

Reference BMP Manual with Note

MANAGING THE WATERCOURSE: BYPASS PUMPING

AUGUST 2003

PROJECT REFERENCE NO. X-XXXX	SHEET NO. EC-2E
RW SHEET NO	Y.
ROADWAY DEBIGN ENGINEER	INTRAULICS ENGINEER

EXAMPLE OF PUMP-AROUND OPERATION

- 1) All excavation shall be performed in only dry or isolated areas of the work zone.
- 2) Impervious dikes are to be used to isolate work from
- stream flow when necessary.

 3) Maintenance of stream flow operations shall be incidental to the work. This includes polyethylene sheeting, diversion pipes, pumps and hoses.
- 4) Pumps and hases shall be of sufficient size to dewater

Impervious Dike Phasing

Short Duration Process

Use for Pipe Installation/Culvert Extension

Include Dewatering Details in Phasing

Do not Block Channel with Dike!

Culvert Extension with Dike

- 1. CONSTRUCT STILLING BASIN (100 M3).
- 2. CONSTRUCT IMPERVIOUS DIKES A, DIVERTING FLOW THROUGH BARREL 1.
- 3. REMOVE EXISTING HEADWALL AND CONSTRUCT EXTENSIONS FOR BARRELS 2 AND 3.
- 4. CONSTRUCT PORTION OF PROPOSED HEADWALL AND PORTION OF INLET/OUTLET CHANNEL IMPROVEMENTS.
- 5. REMOVE IMPERVIOUS DIKES A.

Culvert Extension with Dike

^{6.} CONSTRUCT IMPERVIOUS DIKES B, DIVERTING FLOW THROUGH BARRELS 2 AND 3.

^{7.} CONSTRUCT EXTENSION FOR BARREL 1, REMAINDER OF PROPOSED HEADWALL, AND REMAINDER OF INLET/OUTLET CHANNEL IMPROVEMENTS.

^{8.} REMOVE IMPERVIOUS DIKES B AND STILLING BASIN.

^{9.} COMPLETE ROADWAY.

Temporary Pipe Phasing

Use for Pipe Installation/Culvert Extension

Can be Utilized for New Culverts

Include Dewatering Details in Phasing

Anchor Pipe(s) with Impervious Dike

Phasing with Pipe and Dike

- 1. UTILIZE SPECIAL STILLING BASIN(S) DURING CULVERT CONSTRUCTION AS NEEDED.
- 2. CONSTRUCT IMPERVIOUS DIKES AND INSTALL 18 INCH TEMPORARY PIPE, DIVERTING FLOW THROUGH THE TEMPORARY PIPE.
- 3. CONSTRUCT CULVERT EXTENSION.
- 4. REMOVE IMPERVIOUS DIKES AND TEMPORARY PIPE.
- 5. CONSTRUCT ANY NECESSARY CHANNEL IMPROVEMENTS.
- 6. COMPLETE ROADWAY.

MANAGING THE WATERCOURSE: SUSPENDED BYPASS PIPE

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION AUGUST 2003

BMPs FOR CONSTRUCTION AND MAINTENANCE ACTIVITIES

MANAGING THE WATERCOURSE: PIPED DIVERSION

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION AUGUST 2003

BMPs FOR CONSTRUCTION AND MAINTENANCE ACTIVITIES

Phasing with Temporary Channel

Include Permit Impacts for Channel Tie-Ins

Design/Build with Room to Install Wing Walls

- Include Channel Dimensions:
 - Base Width
 - Channel Depth
 - Side Slope Info

MANAGING THE WATERCOURSE: FABRIC LINED DIVERSION CHANNEL

Phasing with Temporary Channel

- 1. CONSTRUCT STILLING BASIN (140 CY).
- 2. CONSTRUCT TEMPORARY CHANNEL CHANGE WITH LINER (2 FT. BASE, 3 FT. DEEP, 2:1 SIDE SLOPES).
- 3. CONSTRUCT IMPERVIOUS DIKES, DIVERTING FLOW THROUGH TEMPORARY CHANNEL CHANGE.
- 4. CONSTRUCT PROPOSED CULVERT AND INLET/OUTLET CHANNEL IMPROVEMENTS.
- 5. REMOVE IMPERVIOUS DIKES AND TEMPORARY CHANNEL CHANGE, DIVERTING FLOW THROUGH PROPOSED CULVERT.
- 6. REMOVE STILLING BASIN, AND COMPLETE ROADWAY.

Impervious Dike with Channel

- 1. CONSTRUCT STILLING BASIN (160 M3).
- 2. CONSTRUCT IMPERVIOUS DIKE AND TEMPORARY CHANNEL CHANGE WITH LINER (2.5M BASE, 1M DEEP, 2:1 SIDE SLOPE), DIVERTING FLOW.
- 3. CONSTRUCT PROPOSED CULVERT.
- 4. REMOVE IMPERVIOUS DIKE AND TEMPORARY CHANNEL CHANGE, ALLOWING FLOW THROUGH CULVERT.
- 5. COMPLETE ANY NECESSARY INLET/OUTLET CHANNEL IMPROVEMENTS.
- REMOVE STILLING BASIN.
- COMPLETE ROADWAY.

Temporary Stream Crossing Design & Construction

Design to Carry 2-yr Storm

More than One Pipe can be Used

Install Geotextile (Type 2) under Pipe(s) and Stone

Use Class B and No. 57 Stone

Stream Crossing at Diversion

Stabilization for Culverts

Seed and Mat in Timely Manner

Mat Slopes (Straw, Excelsior, Permanent)

Place Coir Fiber Mat on Stream Banks at Inlet

Protect Seeded Area with Temporary EC Devices

Stabilized Slopes

Enhancements for Stilling Basins

Coir Fiber Baffles

Pumping Water from Top of Basin Water

Permanent Pool

Flocculants

Flocculant Incorporation

Flocculant Incorporation

Considerations for Culvert Phasing

- Develop in Conjunction with EC Plan
- Culvert Phasing a Recommendation and Dependent on:
 - Contractor
 - Site Conditions
- Include Details in Construction Sequence

NCDOT Web Site Links

REU Soil & Water Engineering Section

http://www.ncdot.org/doh/operations/dp_chief_eng/roadside/soil_water/

NCDOT BMP Manual

http://www.ncdot.gov/doh/forms/files/BMPMANUAL.pdf

NCDOT Hydraulics Unit

http://www.ncdot.org/doh/preconstruct/highway/hydro/

Questions?

